2 đường thẳng vuông góc
Gọi I và K lần lượt là trung điểm của AB và CD (h.3.80), ta có IK là đoạn vuông góc chung của AB và CD và độ dài đoạn IK là khoảng cách cần tìm:
ĐĂNG KÍ HỌC : THẦY THẾ HÙNG YOUTUBER HÀ NỘI : 0388 723 091add zalo 0388 723 091 trường phái kết nối tri thứchttps://drive.google.com/drive
* Ví dụ 1: Trong không gian với hệ toạ độ Oxyz, viết phương trình đường thẳng (d) đi qua M(1;1;1), cắt đường thẳng d 1: và vuông góc với đường thẳng d 2: x = -2 + 2t; y = -5t; z = 2 + t;
Học Toán 11 Chương 3 Bài 2: Hai đường thẳng vuông góc. 1. Tóm tắt lý thuyết 1.1. Tích vô hướng của hai vectơ trong không gian.
1. Liên hệ giữa tính song song với tính vuông góc trong hình học tập phẳng. - Khi hai đường thẳng phân biệt, cùng vuông góc với mặt đường thẳng thứ tía thì cơ hội đó, chúng sẽ tuy nhiên song cùng với nhau. - Cho hai tuyến phố thẳng tuy nhiên song, giả dụ 1 đường thẳng
Site De Rencontre Serieux Et Gratuit Pour Seniors. Ví dụ 1 Cho hình lập phương Hãy xác định góc giữa các cặp vectơ sau đây a \\overrightarrow {AB} ,\overrightarrow {EG} .\ c \\overrightarrow {AB} ,\overrightarrow {DH}\. Hướng dẫn giải a Vì EG // AC nên góc giữa \\overrightarrow {AB} ,\overrightarrow {EG}\ cũng bằng góc giữa \\overrightarrow {AB}\ và \\overrightarrow {AC}\ Vậy \\left {\overrightarrow {AB} ;\overrightarrow {EG} } \right = \left {\overrightarrow {AB} ;\overrightarrow {AC} } \right = {45^0}.\ b Vì AB // DG nên góc giữa \\overrightarrow {AB} ,\overrightarrow {DH}\ cũng bằng góc giữa \\overrightarrow {DC}\ và \\overrightarrow {DH}\ Vậy \\left {\overrightarrow {AB} ;\overrightarrow {DH} } \right = \left {\overrightarrow {AB} ;\overrightarrow {DH} } \right = {45^0}.\ Ví dụ 2 Cho hình chóp tam giác có SA = SB =SC và có \\widehat {{\rm{ASB}}} = \widehat {BSC} = \widehat {CSA}.\ Chứng minh rằng \SA \bot BC, SB\bot AC, SC \bot AB.\ Hướng dẫn giải Xét các tích vô hướng \\overrightarrow {SA} .\overrightarrow {BC} ,\overrightarrow {SB} .\overrightarrow {AC} ,\overrightarrow {SC} .\overrightarrow {AB} .\ Ta có \\begin{array}{l} \overrightarrow {SA} .\overrightarrow {BC} = \overrightarrow {SA} .\overrightarrow {SC} - \overrightarrow {SB} = \overrightarrow {SA} .\overrightarrow {SC} - \overrightarrow {SA} .\overrightarrow {SB} \\ = \left {\overrightarrow {SA} } \right.\left {\overrightarrow {SC} } \right.c{\rm{os}}\widehat {{\rm{CSA}}} - \left {\overrightarrow {SA} } \right.\left {\overrightarrow {SB} } \rightc{\rm{os}}\widehat {{\rm{ASB}}} \end{array}\ Theo giá thuyết \\left {\overrightarrow {SB} } \right = \left {\overrightarrow {SC} } \right\ Và \c{\rm{os}}\widehat {{\rm{CSA}}} = c{\rm{os}}\widehat {{\rm{ASB}}} \Rightarrow \overrightarrow {SA} .\overrightarrow {BC} = 0\ Vậy \SA \bot BC.\ Chứng minh tương tự ta có \SB\bot AC, SC \bot AB.\ Ví dụ 3 Cho tứ diện ABCD có AB ⊥ AC và AB ⊥ BD. Gọi P và Q lần lượt là trung điểm của AB và CD. Chứng minh rằng AB và PQ là hai đường thẳng vuông góc với nhau. Lời giải Ta có \\overrightarrow {PQ} = \overrightarrow {PA} + \overrightarrow {AC} + \overrightarrow {CQ}\ Và \\overrightarrow {PQ} = \overrightarrow {PB} + \overrightarrow {BD} + \overrightarrow {DQ}\ Do đó \2\overrightarrow {PQ} = \overrightarrow {AC} + \overrightarrow {BD}\ Vậy \2.\overrightarrow {PQ} .\overrightarrow {AB} = \left {\overrightarrow {AC} + \overrightarrow {BD} } \right.\overrightarrow {AB} = \overrightarrow {AC} .\overrightarrow {AB} + \overrightarrow {BD} .\overrightarrow {AB} = 0\ Hay \\overrightarrow {PQ} .\overrightarrow {AB} = 0\ Tức là \PQ \bot AB.\ Ví dụ 4 Cho tứ diện ABCD có AB=AC=AD=a, \\widehat {BAC} = \widehat {BAD} = {60^0}.\. a Chứng minh rằng AB vuông góc CD. b Nếu I, J lần lượt là trung điểm của AB và CD thì \AB \bot IJ.\ Hướng dẫn giải a Ta có \\begin{array}{l} \overrightarrow {AB} .\overrightarrow {AC} = \overrightarrow {AB} \left {\overrightarrow {AD} - \overrightarrow {AC} } \right = \overrightarrow {AB} .\overrightarrow {AD} - \overrightarrow {AB} .\overrightarrow {AC} \\ = \left {\overrightarrow {AB} } \right.\left {\overrightarrow {AD} } \right.\cos BAD - \left {\overrightarrow {AB} } \right.\left {\overrightarrow {AC} } \right.\cos BAC \end{array}\ Mặt khác ta có \AB = AC = AD,\widehat {BAC} = \widehat {BAD}\ Nên \\overrightarrow {AB} .\overrightarrow {AC} = \left {\overrightarrow {AB} } \right.\left {\overrightarrow {AD} } \right.\cos BAD - \left {\overrightarrow {AB} } \right.\left {\overrightarrow {AC} } \right.\cos BAC = 0\ Vậy AB vuông góc với CD. b Do I, J là trung điểm của AB và CD nên ta có \\overrightarrow {IJ} = \frac{1}{2}\left {\overrightarrow {AD} + \overrightarrow {BC} } \right\ Do đó \\begin{array}{l} \overrightarrow {AB} .\overrightarrow {IJ} = \frac{1}{2}\left {\overrightarrow {AB} .\overrightarrow {AD} + \overrightarrow {AB} \overrightarrow {BC} } \right = \frac{1}{2}\left {\overrightarrow {AB} .\overrightarrow {AD} + \overrightarrow {AB} \overrightarrow {BA} + \overrightarrow {AB} .\overrightarrow {AC} } \right\\ = \frac{1}{2}\left {\left {\overrightarrow {AB} } \right.\left {\overrightarrow {AD} } \right\cos {{60}^0} - {{\overrightarrow {AB} }^2} + \left {\overrightarrow {AB} } \right.\left {\overrightarrow {AC} } \right\cos {{60}^0}} \right\\ = \frac{1}{2}\left {\frac{1}{2}{a^2} - {a^2} + \frac{1}{2}{a^2}} \right = 0 \end{array}\ Vậy AB và IJ vuông góc nhau.
Tài liệu gồm 39 trang, tổng hợp lý thuyết SGK, phân dạng và hướng dẫn giải các dạng toán chuyên đề đường thẳng vuông góc – đường thẳng song song trong chương trình Hình học quát nội dung tài liệu phương pháp giải các dạng toán chuyên đề đường thẳng vuông góc – đường thẳng song song BÀI 1. HAI GÓC ĐỔI ĐỈNH. + Dạng 1. Hoàn thành một câu phát biểu hoặc chọn câu phát biểu đúng. + Dạng 2. Vẽ hình theo yêu cầu của đề bài rồi tìm cặp góc đối đỉnh hoặc không đối đỉnh. + Dạng 3. Vẽ hình rồi tính số đo của góc. + Dạng 4. Tìm các cặp góc bằng nhau. + Dạng 5. Gấp giấy để chứng tỏ hai góc đối đỉnh thì bằng nhau. + Dạng 6. Nhận biết hai tia đối nhau. BÀI 2. HAI ĐƯỜNG THẲNG VUÔNG GÓC. + Dạng 1. Hoàn thành một câu phát biểu hoặc chọn câu phát biểu đúng. + Dạng 2. Vẽ đường thẳng vuông góc, vẽ đường trung trực của một đoạn. + Dạng 3. Gấp giấy để tạo thành đường vuông góc hay đường trung trực. + Dạng 4. Nhận biết hai đường thẳng vuông góc, nhận biết đường trung trực của một đoạn thẳng. + Dạng 5. Tính số đo của góc. BÀI 3. CÁC GÓC TẠO BỞI MỘT ĐƯỜNG THẲNG CẮT HAI ĐƯỜNG THẲNG. + Dạng 1. Vẽ hình và tìm cặp góc so le trong, cặp góc đồng vị, cặp góc trong cùng phía. + Dạng 2. Tính số đo góc khi biết một trong bốn góc tạo bởi hai đường thẳng. + Dạng 3. Tìm các cặp góc bằng nhau, các cặp góc bù nhau. BÀI 4. HAI ĐƯỜNG THẲNG SONG SONG. + Dạng 1. Hoàn thành một câu phát biểu hoặc chọn câu phát biểu đúng. + Dạng 2. Vẽ một đường thẳng song song với một đường thẳng cho trước. + Dạng 3. Nhận biết hai đường thẳng song song. [ads] BÀI 5. TIÊN ĐỀ Ơ – CLIT VỀ ĐƯỜNG THẲNG SONG SONG. + Dạng 1. Hoàn thành một câu phát biểu hoặc chọn câu trả lời đúng. + Dạng 2. Vẽ đường thẳng song song với một đường thẳng cho trước. + Dạng 3. Tính số đo góc tạo bởi một đường thẳng cắt hai đường thẳng song song. + Dạng 4. Vận dụng tính chất hai đường thẳng song song để nhận biết hai góc bằng nhau hoặc bù nhau. + Dạng 5. Vận dụng dấu hiệu nhận biết hai đường thẳng song song và tính chất hai đương thẳng song song. BÀI 6. TỪ VUÔNG GÓC ĐẾN SONG SONG. + Dạng 1. Hoàn thành một câu phát biểu bằng cách điền vào chỗ trống, bằng cách nhìn vào hình vẽ hoặc chọn câu trả lời đúng. + Dạng 2. Nhận biết hai đường thẳng song song vì chúng cùng vuông góc hoặc cùng song song với một đường thẳng thứ ba. + Dạng 3. Nhận biết hai đường thẳng vuông góc. + Dạng 4. Tính số đo một góc bằng cách vẽ thêm một đường thẳng mới song song với một đường thẳng đã cho. BÀI 7. ĐỊNH LÍ. + Dạng 1. Phát biểu một định lí hoặc chọn câu phát biểu đúng. + Dạng 2. Viết giả thiết và kết luận của định lí. + Dạng 3. Nêu căn cứ của các khẳng định trong chứng minh định lí. Sắp xếp các câu chứng minh định lí cho đúng thứ tự. + Dạng 4. Cho giả thiết, kết luận của một định lí, diễn đạt định lí đó bằng lời. ÔN TẬP CHƯƠNG 1. + Dạng 1. Kiểm tra hai đường thẳng song song, hai đường thẳng vuông góc. Vẽ đường thẳng song song, đường thẳng vuông góc. Đường trung trực. + Dạng 2. Tính số đo góc. + Dạng 3. Phát biểu một định lí bằng cách điền vào chỗ trống, bằng cách nhìn vào hình vẽ hoặc chọn câu phát biểu đúng. + Dạng 4. Chứng minh một định lí. Tài Liệu Toán 7Ghi chú Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên bằng cách gửi về Facebook TOÁN MATH Email [email protected]
Để chứng minh 2 đường thẳng vuông góc trong chương trình toán THCS các em có thể sử dụng một trong những cách mà chia sẻ. Tùy vào chương trình đang học mà học sinh sử dụng cách chứng hai đường thẳng vuông góc cho phù hợp. – Cách 1 Hai đường thẳng đó cắt nhau và tạo ra một góc 90. – Cách 2 Hai đường thẳng đó chứa hai tia phân giác của hai góc kề bù. Tính chất Góc tạo bởi hai tia phân giác của 2 góc kề bù bằng 90 Hình học Lớp 6 – Cách 3 Hai đường thẳng đó chứa hai cạnh của tam giác vuông. – Cách 4 Tính chất từ vuông góc đến song song Có một đường thẳng thứ 3 vừa song song với đường thẳng thứ nhất vừa vuông góc với đường thẳng thứ hai. – Cách 5 Sử dụng tính chất đường trung trực của đoạn thẳng. Mọi điểm cách đều hai đầu mút của đoạn thẳng thì nằm trên đường trung trực của đoạn thẳng đó. – Cách 6 Sử dụng tính chất trực tâm của tam giác. – Cách 7 Sử dụng tính chất đường phân giác, trung tuyến ứng với cạnh đáy của tam giác cân. – Cách 8 Hai đường thẳng đó chứa hai đường chéo của hình vuông, hình thoi. – Cách 9 Sử dụng tính chất đường kính và dây cung trong đường tròn. – Cách 10 Sử dụng tính chất tiếp tuyến trong đường tròn.
Ví dụ 1 Cho hình lập phương Hãy xác định góc giữa các cặp vectơ sau đây a \\overrightarrow {AB} ,\overrightarrow {EG} .\ c \\overrightarrow {AB} ,\overrightarrow {DH}\. Hướng dẫn giải a Vì EG // AC nên góc giữa \\overrightarrow {AB} ,\overrightarrow {EG}\ cũng bằng góc giữa \\overrightarrow {AB}\ và \\overrightarrow {AC}\ Vậy \\left {\overrightarrow {AB} ;\overrightarrow {EG} } \right = \left {\overrightarrow {AB} ;\overrightarrow {AC} } \right = {45^0}.\ b Vì AB // DG nên góc giữa \\overrightarrow {AB} ,\overrightarrow {DH}\ cũng bằng góc giữa \\overrightarrow {DC}\ và \\overrightarrow {DH}\ Vậy \\left {\overrightarrow {AB} ;\overrightarrow {DH} } \right = \left {\overrightarrow {AB} ;\overrightarrow {DH} } \right = {45^0}.\ Ví dụ 2 Cho hình chóp tam giác có SA = SB =SC và có \\widehat {{\rm{ASB}}} = \widehat {BSC} = \widehat {CSA}.\ Chứng minh rằng \SA \bot BC, SB\bot AC, SC \bot AB.\ Hướng dẫn giải Xét các tích vô hướng \\overrightarrow {SA} .\overrightarrow {BC} ,\overrightarrow {SB} .\overrightarrow {AC} ,\overrightarrow {SC} .\overrightarrow {AB} .\ Ta có \\begin{array}{l} \overrightarrow {SA} .\overrightarrow {BC} = \overrightarrow {SA} .\overrightarrow {SC} – \overrightarrow {SB} = \overrightarrow {SA} .\overrightarrow {SC} – \overrightarrow {SA} .\overrightarrow {SB} \\ = \left {\overrightarrow {SA} } \right.\left {\overrightarrow {SC} } \right.c{\rm{os}}\widehat {{\rm{CSA}}} – \left {\overrightarrow {SA} } \right.\left {\overrightarrow {SB} } \rightc{\rm{os}}\widehat {{\rm{ASB}}} \end{array}\ Theo giá thuyết \\left {\overrightarrow {SB} } \right = \left {\overrightarrow {SC} } \right\ Và \c{\rm{os}}\widehat {{\rm{CSA}}} = c{\rm{os}}\widehat {{\rm{ASB}}} \Rightarrow \overrightarrow {SA} .\overrightarrow {BC} = 0\ Vậy \SA \bot BC.\ Chứng minh tương tự ta có \SB\bot AC, SC \bot AB.\ Ví dụ 3 Cho tứ diện ABCD có AB ⊥ AC và AB ⊥ BD. Gọi P và Q lần lượt là trung điểm của AB và CD. Chứng minh rằng AB và PQ là hai đường thẳng vuông góc với nhau. Lời giải Ta có \\overrightarrow {PQ} = \overrightarrow {PA} + \overrightarrow {AC} + \overrightarrow {CQ}\ Và \\overrightarrow {PQ} = \overrightarrow {PB} + \overrightarrow {BD} + \overrightarrow {DQ}\ Do đó \2\overrightarrow {PQ} = \overrightarrow {AC} + \overrightarrow {BD}\ Vậy \2.\overrightarrow {PQ} .\overrightarrow {AB} = \left {\overrightarrow {AC} + \overrightarrow {BD} } \right.\overrightarrow {AB} = \overrightarrow {AC} .\overrightarrow {AB} + \overrightarrow {BD} .\overrightarrow {AB} = 0\ Hay \\overrightarrow {PQ} .\overrightarrow {AB} = 0\ Tức là \PQ \bot AB.\ Ví dụ 4 Cho tứ diện ABCD có AB=AC=AD=a, \\widehat {BAC} = \widehat {BAD} = {60^0}.\. a Chứng minh rằng AB vuông góc CD. b Nếu I, J lần lượt là trung điểm của AB và CD thì \AB \bot IJ.\ Hướng dẫn giải a Ta có \\begin{array}{l} \overrightarrow {AB} .\overrightarrow {AC} = \overrightarrow {AB} \left {\overrightarrow {AD} – \overrightarrow {AC} } \right = \overrightarrow {AB} .\overrightarrow {AD} – \overrightarrow {AB} .\overrightarrow {AC} \\ = \left {\overrightarrow {AB} } \right.\left {\overrightarrow {AD} } \right.\cos BAD – \left {\overrightarrow {AB} } \right.\left {\overrightarrow {AC} } \right.\cos BAC \end{array}\ Mặt khác ta có \AB = AC = AD,\widehat {BAC} = \widehat {BAD}\ Nên \\overrightarrow {AB} .\overrightarrow {AC} = \left {\overrightarrow {AB} } \right.\left {\overrightarrow {AD} } \right.\cos BAD – \left {\overrightarrow {AB} } \right.\left {\overrightarrow {AC} } \right.\cos BAC = 0\ Vậy AB vuông góc với CD. b Do I, J là trung điểm của AB và CD nên ta có \\overrightarrow {IJ} = \frac{1}{2}\left {\overrightarrow {AD} + \overrightarrow {BC} } \right\ Do đó \\begin{array}{l} \overrightarrow {AB} .\overrightarrow {IJ} = \frac{1}{2}\left {\overrightarrow {AB} .\overrightarrow {AD} + \overrightarrow {AB} \overrightarrow {BC} } \right = \frac{1}{2}\left {\overrightarrow {AB} .\overrightarrow {AD} + \overrightarrow {AB} \overrightarrow {BA} + \overrightarrow {AB} .\overrightarrow {AC} } \right\\ = \frac{1}{2}\left {\left {\overrightarrow {AB} } \right.\left {\overrightarrow {AD} } \right\cos {{60}^0} – {{\overrightarrow {AB} }^2} + \left {\overrightarrow {AB} } \right.\left {\overrightarrow {AC} } \right\cos {{60}^0}} \right\\ = \frac{1}{2}\left {\frac{1}{2}{a^2} – {a^2} + \frac{1}{2}{a^2}} \right = 0 \end{array}\ Vậy AB và IJ vuông góc nhau.
Hai đường thẳng vuông góc Hai đường thẳng cắt nhau tạo thành những góc vuông là hai đường thẳng thẳng vuông góc. Kí hiệu \xx' \bot yy'\. Tính chất Có một và chỉ một đường thẳng a’ đi qua điểm O cho trước và vuông góc với đường thẳng a cho trước. Đường trung trực của đoạn thẳng Đường thẳng đi qua trung điểm của đoạn thẳng và vuông góc với đoạn thẳng được gọi là đường trung trực của đoạn thẳng ấy. xy là đường trung trực của đoạn thẳng AB. Ví dụ 1 Cho AOM có số đo bằng \{120^0}\. Vẽ các tia OB, OC nằm trong góc AOM sao cho \OB \bot OA,OC \bot OM.\ Tính số đo góc BOC. Hướng dẫn giải OB nằm giữa OA, OM mà \\begin{array}{l}\widehat {AOB} = {90^0}\\\widehat {AOM} = {120^0}\end{array}\. Vậy \\widehat {BOM} = {120^0} - {90^0} = {30^0}\. \\begin{array}{l}\widehat {MOB} = {30^0}\\\widehat {MOC} = {90^0}\end{array}\. Vậy OB nằm giữa OM, OC \\widehat {BOC} = {90^0} - {30^0} = {60^0}\. Ví dụ 2 Cho góc xOy tù, ở miền trong góc ấy dựng các tia Oz và Ot sao cho Oz vuông góc với Ox, Ot vuông góc Oy. Tính tổng số đo của hai góc xOy và zOt. Hướng dẫn giải Ta có Ox vuông góc với Oz nên \\widehat {xOz} = {90^0}\ Ot vuông góc với Oy nên \\widehat {tOy} = {90^0}\ Nên \\widehat {xOy} + \widehat {zOt} = \widehat {tOy} + \widehat {xOt} + \widehat {zOt}\ \ = \widehat {tOy} + \widehat {xOz} = {180^0}\. Ví dụ 3 Cho góc aOb có số đo bằng \{100^0}\. Dựng ở ngoài góc ấy hai tia Oc và Od theo thứ tự vuông góc với Oa và Ob. Gọi Ox là tia phân giác của góc aOb và Oy là tia phân giác của góc cOd. a. Chứng minh rằng hai tia Ox và Oy đối nhau. b. Tìm số đo các góc xOc và bOy. Hướng dẫn giải Ta có \\widehat {aOb} = {100^0},\,\,\widehat {aOc} = {90^0},\widehat {bOd} = {90^0}\ \\begin{array}{l} \Rightarrow \widehat {cOd} = {360^0} - \widehat {aOb} + \widehat {aOc} + \widehat {bOd}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \,{360^0}\, - {100^0} + {90^0} + {90^0} = {360^0} - {280^0} = {80^0}.\end{array}\ Ox là tia phân giác của \\widehat {aOb}\ nên \\widehat {xOa} = \frac{1}{2}\widehat {aOb} = \frac{1}{2}{.100^0} = {50^0}\ Oy là tia phân giác của \\widehat {cOy}\ nên \\widehat {cOy} = \frac{1}{2}\widehat {cOd} = \frac{1}{2}{.80^0} = {40^0}\ Do đó \\widehat {xOy} = \widehat {xOa} + \widehat {aOc} + \widehat {cOy}\ \ = {50^0} + {90^0} + {40^0}\ Hay \\widehat {xOy} = {180^0}\ Suy ra Ox và Oy là hai tia đối nhau. b. Ta có \\widehat {xOc} = \widehat {xOa} + \widehat {aOc} = {50^0} + {90^0} = {140^0}\. \\widehat {bOy} = \widehat {bOd} + \widehat {dOy} = {90^0} + {40^0} = {130^0}\.
2 đường thẳng vuông góc